PHYS 711 Fall 2011 Syllabus

R. Creswick Office : PSC 509 Phone: 3766

Tu-Th 9:30 AM PSC 205

Email: <u>Creswick.rj@sc.edu</u>

The **required** text for this class is my notes, which can be purchased from the *Quick Copy* in the basement of Russell House (near where you get your ID). I also recommend as a secondary text any of the standard graduate texts like Sakurai, *Modern Quantum Mechanics*, Merzbacher, *Quantum Mechanics*, Shankar, *Principles of Quantum Mechanics*, or Messiah, *Quantum Mechanics*. You may also find it useful to refer to one of the many good undergraduate texts such as Griffiths or Park. Problems are due one week after they are assigned.

Grades are calculated as follows:

Mid Term	20%
Final Exam	20%
Homework	60%

I would like to organize an informal (voluntary) problem session for either Monday or Wednesday afternoon. During this period we can go over homework problems or problems typical of the qualifying exam.

The goal of this course is to give you a working knowledge of the theoretical and conceptual foundations of quantum mechanics.

day	subject	objectives
8/18	Mathematical Foundations of QM	Develop facility with the bra-ket notation
8/23	Hilbert space, operators, basis states,	Construct operators and states in Hilbert
		space.
8/25	The Harmonic Oscillator	Develop a facility with the algebra of the
8/30	Ladder operators, coherent states	ladder operators. Apply algebraic methods
9/1	Landau levels in 2D electron gas	to interesting problems
	Shell model of the nucleus	
0/6		
9/6	Quantum Dynamics	Solve the IDSE in a basis. Calculate time-
9/8	Unitary time evolution, the Hamiltonian	time dependent expectation values Calculate
9/13	Propagator for the TDSE, the Eavyman path	nicture Calculate TDPT to second order
9/15	integral Heisenberg and interaction pictures	and apply Fermi's Golden Rule
	time-dependent perturbation theory	and apply remin s conden Rule
9/20	Concentual foundations of OM	Explore the consequences of the tenets of
9/20	Conenhagen and Universal wavefunction	OM Ponder the implications of the 2 slit
9/27	Two-slit Stern-Gerlach EPR GHZ Bell	EPR and GHZ experiments
0/20	Symmetry and Unitary Transformations	Construct change of basis by unitary
9129	Change of basis Translations Rotations Parity	transformation Find the generators and the
	Time reversal symmetry	Lie algebra for continuous transformations
10/4		Construct antiunitary operators for time
10/6		reversal.
10/11	The Theory of Rotations	Use the symmetry of systems under rotation
10/13	Algebra of angular momentum operators	to characterize its energy eigenstates.
10/18	Irreducible reps of rotation group, Clebsch-	Construct cartesisan and spherical tensor
10/20	Gordan Series, tensor operators, Wigner-Eckart	operators.
10/25	theorem	
10/27	Approximation Methods	Construct the perturbation series to second
11/1	Perturbation theory, Variational Methods	order. Apply the variational method to
11/3		calculate ground states
11/8		
11/15	The Hydrogen Atom	Develop a facility and familiarity with the
11/17	Relativistic corrections	hydrogenic eigenfunctions.
		Apply approximation methods to understand
11/22	Thanksgiving Holiday	the details of the spectrum of the hydrogen
11/29	Hyperfine interaction	atom. Explore the "hidden" symmetry
12/1	Runge Lenz vector	generated by the Kunge-Lenz vector.
12/1		

Syllabus